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On the ground state of regular polygonal billiards
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Abstract. The Helmholtz equation for regular polygons is investigated by means of the
conformal mapping from the circle, which provides an expansion parameter for the approximate
evaluation of the lowest eigenvalue and the corresponding eigenvector.

1. Introduction

The Helmholtz equation with Dirichlet boundary conditions for regular polygons, here
written in complex coordinates
2
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has a simple analytical solution only for the square and the limit case of the circle. The
case of the equilateral triangle was solved by Eaff] long ago, and then rediscussed by
various authors. Standing as the eigenvalue equation for a quantum particle in a billiard
with reflecting walls, the corresponding classical dynamics is integrable in the sense of the
theorem by Arnold precisely in the three mentioned cases, the Hamiltonian flow taking
place on an invariant surface with the topology of a torus. Regular polygons with number
of sidesn > 4 have invariant surfaces with higher but finite genus, and are called ‘pseudo-
integrable’. After this picture of the classical dynamics, which more generally was drawn
for polygonal billiards, Richens and Berry [2] computed the action-angle variables for the
equilateral triangle and obtained the quantum spectrum by using the Bohr—Sommerfeld rules.

A detailed account of the properties of classical polygonal billiards is given by Gutkin
[3].

The triangular billiard also has an interpretation as a model for the dynamics of three
hard point particles in a segment. For the case of equal masses, Jung [4] gave the solution
for the equilateral triangle with an approach based on symmetries.

Integrability is a consequence of the property of the triangle and the square to tessellate
the plane. Any trajectory can be unfolded to a straight line by a sequence of reflections of
the polygon about the sides hit by the particle. For regular polygonsmithd, including
hexagons, reflections require more than one sheet. On the quantum side, the property of
integrability is linked to the simplicity of the solutions of the eigenvalue problem. The
following lemma by Amaret al [5], states that a solution to equation (1) in terms of a finite
sum
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that vanishes on a segment, has the propetty, z*) = —y(z’, z’*), wherez’ is the point
symmetric toz with respect to the straight line containing the segment. In particylar,
vanishes on the whole straight line. This implies that, among regular polygons, only the
cases: = 3, 4 allow a solution of this type. However, a part of the spectrum of the hexagon
is inherited from the equilateral triangle, due to the relationship among the two lattices.
Expansions more general than (2) were shown to be not allowed for the non-integrable
cases [6].

Choosing the polygons inscribed in the unit circle, with vertices at the roots of unity,
the lowest value:, for the triangle, the square and the circle are:

€3 =4m/3 €= €00 = Jo,1 3)

where 1 is the first zero of Bessel's functiafy. It is instructive to write the ground states
for n = 3, 4 in polar coordinates, as Neumann series of Bessel functions:

U (r,6) = Jo(enr) cos(%) n ZZcos(kn% n %) T (€,) COSKD). (4)
k=1

A proof is given in the appendix. Unfortunately, this expression cannot be generalized to
all values ofn, because it always corresponds to a finite sum of trigonometric functions.
However, it is reasonable to conjecture the following general expression for the ground state
of regular polygons

Yn(r, 0) = Jo(€ar) + ZthJnk(enr) cognko). 5)
k=1
The function is symmetric under mirror transformations of the polygon; it is then sufficient
to require vanishing on the boundary segment in the sectov0< /n.

A convenient way to deal with the difficulty of boundary conditions is to map the
polygon conformally onto the unit disk| < 1. The conformal map giving the one-to-
one correspondence of pointsin the unit disk with pointsw(z) in the polygon, is the
Schwarz—Christoffel transform [7],

_ ra-1/n) (©)
C T(l+1/m)T(A—2/n)

where the value of the scale fact6), assures that the corners of the polygon, given by the
roots of the equation” = 1, are fixed points of the mapping. The Helmholtz equation for
the polygon is mapped into

2
V@) = @Y, ) @)
707

with the simple boundary conditioyi = O for |z| = 1. The weight function is the generator
of Gegenbauer’s polynomials:

w(z) =C, / s (L— ") C,
0

—4

W' (ré”)|? = C,(1+ r? — 2" cosnd) 2" = C, Y " r*"CZ" (cosnh).  (8)
k=0

The mapping technique has already been used to compute zeta fungtionsums of
negative integer powers of eigenvalues, for regular polygons. As shown by ltzykson
et al [8], they may be obtained by integrating products of the Green’s function of the
Laplace operator in the polygon, which is related in a simple way to that of the circle. The
approximate evaluation of zeta functions for regular polygons was done by Kvitsinsky [9]
to first order ine, where|w'(z)|? = C,f[l + €(z, z*)]- Aurell and Salomonson [10] have
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studied the functional determinant of the Laplacian in polygons{-eg{0)}, by means of
conformal mappings.

Integral (6) for the analytic functiomw(z) can be evaluated by a power expansion in
to give a hypergeometric series:

21 1 >
w(z) = Cpz 21 (n - 1+ >=an2sz”k (9a)
k=0
1 2\ (2 2
=1 =— |- )(-+1)...{ —+k-1). %
fo fe= o+ (n) <n + ) <n + ) (%0)
Note the periodicity propertyw(€?7/"z) = €>/"w(z), and the action of complex

conjugation: w(z)* = w(z*).

Since, obviouslyw(z) = z whenn goes to infinity, it is natural to search an approximate
solution of equation (7) in the form of a/& expansion, starting from the known solutions
of the circle. To improve the result even for law in this paper the ground statg and
the corresponding eigenfunctiof, for regular polygons are calculated in the form jof
expansions, where the fictitious parametes introduced at the level of the hypergeometric
series:

o0

w(z) = Cuz[l+Af(2)] f@ =) fi (10)

k=1

and is put equal to unity at the end. The expansion scheme differs from that used by
Kvitsinsky, making, in this case, computations simpler. | explicitly evaluate up to the third-
order term fore,, and the second-order term for the eigenfunction. The eigenfunction has
the form given in equation (5). The effectiveness of the expansion can be tested against the
casewr = 3,4 where convergence is expected to be worse and, on the other hand, exact
results are available.

By writing the expansion for the eigenvalue

1
€n = C—eo[l — A1 — A28 — 2383+ .. ] (11a)

n

one obtaing = jo1, 81 = 0 and
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§r = — = 11b
2= ;fk Jer(€0) (11b)
& A Jsnv1(€0) [, Jkns1(€0)  Jk—sn+1(€0)
82 = =0 . f sn+ |:2 n+ + (k—s)n+ :|
* 4 kZ:; fk ; fk f J\'n (60) Jkn (EO) J(k—.v)n (60)

_ig o Jint2(€0)
4 ;fk T o) vafk .- (11c)

The approximate values, given by the expansion are computed numerically and listed in
table 1. The lowest order is given by a simple rescaling and provides a fair approximation;
the factorss, andds rapidly vanish with increasing. A 1/n expansion would have given

less satisfactory results and involved in any case the need of numerical computations to
produce numbers; the present approach corresponds to a partial resummation of terms of
the 1/n expansion.
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Table 1.
Ground state
n Jo1/Cn 82 83 €n Exact
3 42484580 0.0128583 0.00098520 4.189644 4.188790
4 3.1527955 0.00343597 0.00010010 3.141647 3.141593
5 2.8243478 0.00122488 0.00001722 2.820840
6 2.6763608 0.00052364 0.00000410 2.674948
8 2.5468987 0.00013514 0.00000043 2.546553
o — — — — 2.404 826

2. The X\ expansion

The most obvious approach would be to use the standard perturbation theory to solve the
eigenvalue equation (7), written in the form

(Hoy)(r, 0) = (Coen)’I L+ 2 ) fitkn + 1)(ré")*" Py (r, 0) (12)
k=1

where —Hy is the Laplace operator in the unit disk. The eigenfunctions’fl@fare the
Fourier—Bessel basis

i Jm(jm,sr) e:timg
ﬁ Jm+1(jm,s)
Difficulties arise starting from the lowest order because of integrations of products of Bessel
functions, and summations over zeros.

An equivalent but computationally much more convenient approach is to represent the
solution of the equation in the integral form

um,.f(r’e)z m=0,1,...,S=1,2.... (13)

1 2r ("3 * —ia
Y(z,2%) = E/o da (o) @2l ) —e ] (14)

where the index in ¢ ande is omitted. Both the eigenvalueand the functiom («) are
obtained by imposing the boundary condition on the circle for all angfles

1 21 1 e[ew(e ) —eiw (&)
0= 2/, do h(x)ez . (15)

Once they are found, the eigenfunction of the polygon, solving equation (1), is obtained
by entering them into expression (14), with the variableeplacing the mapping function
w(z). By introducing the Fourier components of the periodic functiga)

hia) = Y he* (16)

k=—00

we obtain the following representation of the eigenfunction for the polygon:
V(. 0) =Y he I i (er). (17)
k

In particular, for the circle, the requirement of vanishing on the boundary leads to the
Bessel-Fourier basis,, ;.

To start the perturbative scheme, let us expand. ithe weight functioni(«) and,
correspondingly, its Fourier components:

h(e) = hO @) + 10D (@) + 22D (@) + - - - he = hQ +2hP + 2202 ... (18)
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and insert it, together with the expansion (14) of the exact eigenvalue, into the boundary
equation (15) and solve it at the various orders.in
At zero orderin A, we get the equation

0="> ne™ Ji(eo) (19)
k

which, for the ground state of polygons, is solved by setting
h;(co) = S0k € = jo1. (20)
Different zerosjo, of Jo would provide other eigenvalues of the polygon, with the same
expansions (1d)—(11c).
The equation for thdirst order, after simple integrations and use of the symmetry
relationJ_,(x) = (—=1)"J,(x), reads

1 [ oo 1 _
=5 f dah“)(a)ém'”@*”+eoam(eo)—eo.h(eo)é[f(é@)+f<e*")>]. (21)
0

By taking the integral in the variable one obtains the resudy = 0. By introducing the
Fourier expansion of the functioh™ («) all integrals can be evaluated. The requirement
of vanishing for allo gives

@ _ €0 Ji(€o)

T2 Truleo)
all other coefficients being zero. As it normally occurs in perturbation theory, the component
hél) is not provided by the equation, due to the conditigtxg) = O; the freedom in choosing

the phase off allows us to put:y’ = 0.
The equation for theecond orderafter all simple integrations, is:

k=12... (22)

L~ jeosi 1 , ,
=5 /(; dah® () dosi@=0) | ¢os, 1 (e0) + §€glz(6o)[f(e'9)2 T fEe)?
2 60 Z M € Lf €7 I tn-1(e0) — f (@) Isnsa(€0)]: (23)

Again, we are allowed to pUtgz) = 0. The condition of vanishing for a#l gives the value
8, given in equation (14), and

Ji(eo) €5 & Jis+vnt1(eo)  Junyi(eo)
h® = 2N A [ + 248,
T Jgn(eo) 4 ; Tots |7 n(eo) T Jeo) (2%

p@ _ i€ Egifk*f‘[f(kmnﬂ(eo) N m+l(€0):|

T T (e0) 4 & J(k+5)n (€0) Jsn(€0)

2 k=1 k-1
Sy [ DS fonial€0) _ (kn+1>kasfs} k-1
s=1

J:Fkn (€0) Jn (€0)
(24b)
The equation for thehird order is rather long:
[e%e) ] ¢ 00 ‘
0= k;oo h]((3)e'k9 Jfk (60) + EO k;wh(z)elknﬁ[f(e IO)] e ]_(60) f(ele)]knJrl(eO)]

3
e €
€0 Z h(l)ékng[f_kn—l(Eo) — J_inr1(€0)] + 83€0J1(€0) — 4%313(60)
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2 o0 ) . A
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k=—00

—i—%fl(eo)f(e*'%f(é%[f(e*'@) + £E@). (25)

By taking the integral in the variablg the term containing the unknown coefficients of the
function #® vanishes because 0f(ep) = 0, and we obtain, with some labour, the term
83, given in equation (1d).

The ground state of the polygon is obtained by entering the expansions of the Fourier
coefficients into equation (17). By taking into account the found progefty = (—1)*4.",
one obtains the expression equation (5):

Y (r, 0) = Jo(ear) +2) (WD + 12, + .. ) Jiu(enr) cOLknO) (26)
k=1

where the coeﬁicientk(_l,ln andh(_z,ln are respectively given by equations (22) and (24).

3. Numerical evaluation

For the evaluation of the ground-state energy a numerical approach is necessary. In
particular, one must compute ratios of consecutive Bessel functions with the same argument.
To this end, forx smaller than all the zerog, ,, of J,, the expansion [11, 12]:

Jv 1(x) 2 & > 1
* = - ZXZkSv,Zk Sy = Z ]7 (27)
k=1 m=1Jv,m

J,(x) X

is used, where the coefficients are obtainable through a recursive relation; a long list of
valuess, » is given in [13]. To achieve a good accuracy, terms up te 6 are used; for
the triangle and the square, the first ratigJs, . . . were obtained directly by means of the
relationz J,1(z) + zJ,_1(z) = 2vJ,(2).

The results of the calculations for the ground-state energies are collected in table 1, for
some values of.

The A expansion could also have been carried out starting from a valueith & > 1,
and the formulae would be the same as indicated in the introduction. One could also
start from an initial state of the circld, with p # 0. In this way, repeating the above
computations, one obtains expansions for excited states, with the rule ihabt an integer
multiple of n. To second order, writing the same expansiorzjlbne obtains:

= Jin Jin—p
51=0 5y = @ Z sz < k +p+1(€0) + k 1+1(€0)) (28)
4 k=1 Jkn+p(60) Jkn—p(EO)

Table 2.

First excited state

J11/Cn 82 D Exact

N

6.76925 0.044913 6.46516 6.39848
5.02348 0.010230 4.97209 4.96729
450015 0.003557 4.48469

4.26436 0.001429 4.25828

4.05808 0.000358 4.05663

— — — 3.83171

8@6‘)01#00
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whereeg is now a zero of/,. Note thats, is independent of the sign ¢f, meaning that the
doubly degenerate level of the circle evolves into a degenerate level of the polygon. For
the first excited state, Liboff [14] proved that it is indeed doubly degenerate, with the nodal
line given by a mirror symmetry of the polygon. A detailed discussion of degeneracies for
n = 3,4 is given in [15].

A few values for the first excited state of regular polygons are provided in table 2. For
n = 3,4 the accordance is rather poor, but the correction term for largedicates that
the values become reliable.

Appendix

By using the integral representation of Bessel functions and the discrete representation of
Dirac’s delta function

27 o)
Jy(t) = % / dy g'sine=ive Z eke= = 27 (p — 0) (A1)
0

k=—o00

one can show the following identity, whereis an integer:

D ka0 COS[w + kn)g + B]

k=—00
n—1

. (27 2 2 .
= - cos|zsin| —¢ ) cosp —ve— |cos|tcos| — £ |sing + B . (A.2)
n =0 n n n
In particular, forv =0, =7/2—-60,t =€r, B =7/(2n), x = r c0SH, y = r Sing:

T 4

Jo(er) cos( 2n) + 22 Jon(€r) cos[kn% n Zn] cogkn6)

1 n—1 2 2
=>) cos[ex cos(nﬁ) + n] cos[ey sin <n€>] . (A.3)
ni= n 2n n

Forn = 3, 4 one obtains the first eigenstates of the equilateral triangle and the square:

1|4 (1 V3 1 |4 (1 V3
Va(x, y) = 5 sin [3 (2x+ zyﬂ + 2sm[3 <2x — Zy):|

1 . (4n V3 4r (1 V3
5 Sl <3x> + - COS|:3 <2x + 2y>:|

V3 4r (1 /3 V3 47
Ya(x, y) = cogmx) + cogmy). (A.5)
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