
On the ground state of regular polygonal billiards

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 6517

(http://iopscience.iop.org/0305-4470/30/18/025)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 6517–6524. Printed in the UK PII: S0305-4470(97)79569-6

On the ground state of regular polygonal billiards
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Abstract. The Helmholtz equation for regular polygons is investigated by means of the
conformal mapping from the circle, which provides an expansion parameter for the approximate
evaluation of the lowest eigenvalue and the corresponding eigenvector.

1. Introduction

The Helmholtz equation with Dirichlet boundary conditions for regular polygons, here
written in complex coordinates

−4
∂2

∂z∂z∗
ψ(z, z∗) = ε2ψ(z, z∗) (1)

has a simple analytical solution only for the square and the limit case of the circle. The
case of the equilateral triangle was solved by Lamé [1] long ago, and then rediscussed by
various authors. Standing as the eigenvalue equation for a quantum particle in a billiard
with reflecting walls, the corresponding classical dynamics is integrable in the sense of the
theorem by Arnold precisely in the three mentioned cases, the Hamiltonian flow taking
place on an invariant surface with the topology of a torus. Regular polygons with number
of sidesn > 4 have invariant surfaces with higher but finite genus, and are called ‘pseudo-
integrable’. After this picture of the classical dynamics, which more generally was drawn
for polygonal billiards, Richens and Berry [2] computed the action-angle variables for the
equilateral triangle and obtained the quantum spectrum by using the Bohr–Sommerfeld rules.

A detailed account of the properties of classical polygonal billiards is given by Gutkin
[3].

The triangular billiard also has an interpretation as a model for the dynamics of three
hard point particles in a segment. For the case of equal masses, Jung [4] gave the solution
for the equilateral triangle with an approach based on symmetries.

Integrability is a consequence of the property of the triangle and the square to tessellate
the plane. Any trajectory can be unfolded to a straight line by a sequence of reflections of
the polygon about the sides hit by the particle. For regular polygons withn > 4, including
hexagons, reflections require more than one sheet. On the quantum side, the property of
integrability is linked to the simplicity of the solutions of the eigenvalue problem. The
following lemma by Amaret al [5], states that a solution to equation (1) in terms of a finite
sum

ψ(z, z∗) =
∑̀
k

cke
1
2 (αkz

∗−α∗k z) |αk| = ε (2)
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that vanishes on a segment, has the propertyψ(z, z∗) = −ψ(z′, z′∗), wherez′ is the point
symmetric toz with respect to the straight line containing the segment. In particular,ψ

vanishes on the whole straight line. This implies that, among regular polygons, only the
casesn = 3, 4 allow a solution of this type. However, a part of the spectrum of the hexagon
is inherited from the equilateral triangle, due to the relationship among the two lattices.
Expansions more general than (2) were shown to be not allowed for the non-integrable
cases [6].

Choosing the polygons inscribed in the unit circle, with vertices at the roots of unity,
the lowest valueεn for the triangle, the square and the circle are:

ε3 = 4π/3 ε4 = π ε∞ = j0,1 (3)

wherej0,1 is the first zero of Bessel’s functionJ0. It is instructive to write the ground states
for n = 3, 4 in polar coordinates, as Neumann series of Bessel functions:

ψn(r, θ) = J0(εnr) cos
( π

2n

)
+ 2

∞∑
k=1

cos
(
kn
π

2
+ π

2n

)
Jnk(εnr) cos(nkθ). (4)

A proof is given in the appendix. Unfortunately, this expression cannot be generalized to
all values ofn, because it always corresponds to a finite sum of trigonometric functions.
However, it is reasonable to conjecture the following general expression for the ground state
of regular polygons

ψn(r, θ) = J0(εnr)+ 2
∞∑
k=1

hkJnk(εnr) cos(nkθ). (5)

The function is symmetric under mirror transformations of the polygon; it is then sufficient
to require vanishing on the boundary segment in the sector 06 θ 6 π/n.

A convenient way to deal with the difficulty of boundary conditions is to map the
polygon conformally onto the unit disk|z| 6 1. The conformal map giving the one-to-
one correspondence of pointsz in the unit disk with pointsw(z) in the polygon, is the
Schwarz–Christoffel transform [7],

w(z) = Cn
∫ z

0
ds (1− sn)−2/n Cn = 0(1− 1/n)

0(1+ 1/n)0(1− 2/n)
(6)

where the value of the scale factorCn assures that the corners of the polygon, given by the
roots of the equationzn = 1, are fixed points of the mapping. The Helmholtz equation for
the polygon is mapped into

−4
∂2

∂z∂z∗
ψ(z, z∗) = ε2|w′(z)|2ψ(z, z∗) (7)

with the simple boundary conditionψ = 0 for |z| = 1. The weight function is the generator
of Gegenbauer’s polynomials:

|w′(reiθ )|2 = Cn(1+ r2n − 2rn cosnθ)−2/n = Cn
∞∑
k=0

rknC
2/n
k (cosnθ). (8)

The mapping technique has already been used to compute zeta functionsζ(s), sums of
negative integer powers of eigenvalues, for regular polygons. As shown by Itzykson
et al [8], they may be obtained by integrating products of the Green’s function of the
Laplace operator in the polygon, which is related in a simple way to that of the circle. The
approximate evaluation of zeta functions for regular polygons was done by Kvitsinsky [9]
to first order inε, where |w′(z)|2 = C2

n[1 + ε(z, z∗)]. Aurell and Salomonson [10] have
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studied the functional determinant of the Laplacian in polygons, exp{−ζ ′(0)}, by means of
conformal mappings.

Integral (6) for the analytic functionw(z) can be evaluated by a power expansion inz
to give a hypergeometric series:

w(z) = Cnz 2F1

(
2

n
,

1

n
; 1+ 1

n
; zn

)
= Cnz

∞∑
k=0

fkz
nk (9a)

f0 = 1 fk = 1

k!(nk + 1)

(
2

n

)(
2

n
+ 1

)
. . .

(
2

n
+ k − 1

)
. (9b)

Note the periodicity propertyw(ei2π/nz) = ei2π/nw(z), and the action of complex
conjugation:w(z)∗ = w(z∗).

Since, obviously,w(z) = z whenn goes to infinity, it is natural to search an approximate
solution of equation (7) in the form of a 1/n expansion, starting from the known solutions
of the circle. To improve the result even for lown, in this paper the ground stateεn and
the corresponding eigenfunctionψn for regular polygons are calculated in the form ofλ
expansions, where the fictitious parameterλ is introduced at the level of the hypergeometric
series:

w(z) = Cnz[1+ λf (z)] f (z) =
∞∑
k=1

fkz
kn (10)

and is put equal to unity at the end. The expansion scheme differs from that used by
Kvitsinsky, making, in this case, computations simpler. I explicitly evaluate up to the third-
order term forεn, and the second-order term for the eigenfunction. The eigenfunction has
the form given in equation (5). The effectiveness of the expansion can be tested against the
casesn = 3, 4 where convergence is expected to be worse and, on the other hand, exact
results are available.

By writing the expansion for the eigenvalue

εn = 1

Cn
ε0[1− λδ1− λ2δ2− λ3δ3+ . . .] (11a)

one obtainsε0 = j0,1, δ1 = 0 and

δ2 = ε0

2

∞∑
k=1

f 2
k

Jkn+1(ε0)

Jkn(ε0)
(11b)

δ3 = ε2
0

4

∞∑
k=2

fk

k−1∑
s=1

fk−sfs
Jsn+1(ε0)

Jsn(ε0)

[
2
Jkn+1(ε0)

Jkn(ε0)
+ J(k−s)n+1(ε0)

J(k−s)n(ε0)

]

−ε
2
0

4

∞∑
k=2

fk
Jkn+2(ε0)

Jkn(ε0)

k−1∑
s=1

fsfk−s . (11c)

The approximate valuesεn given by the expansion are computed numerically and listed in
table 1. The lowest order is given by a simple rescaling and provides a fair approximation;
the factorsδ2 andδ3 rapidly vanish with increasingn. A 1/n expansion would have given
less satisfactory results and involved in any case the need of numerical computations to
produce numbers; the present approach corresponds to a partial resummation of terms of
the 1/n expansion.
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Table 1.

Ground state
n j0,1/Cn δ2 δ3 εn Exact

3 4.248 4580 0.012 858 3 0.000 985 20 4.189 644 4.188 790
4 3.152 7955 0.003 435 97 0.000 100 10 3.141 647 3.141 593
5 2.824 3478 0.001 224 88 0.000 017 22 2.820 840
6 2.676 3608 0.000 523 64 0.000 004 10 2.674 948
8 2.546 8987 0.000 135 14 0.000 000 43 2.546 553
∞ — — — — 2.404 826

2. Theλ expansion

The most obvious approach would be to use the standard perturbation theory to solve the
eigenvalue equation (7), written in the form

(Ĥ0ψ)(r, θ) = (Cnεn)2|1+ λ
∞∑
k=1

fk(kn+ 1)(reiθ )kn|2ψ(r, θ) (12)

where−Ĥ0 is the Laplace operator in the unit disk. The eigenfunctions ofĤ0 are the
Fourier–Bessel basis

um,s(r, θ) = 1√
π

Jm(jm,sr)

Jm+1(jm,s)
e±imθ m = 0, 1, . . . , s = 1, 2 . . . . (13)

Difficulties arise starting from the lowest order because of integrations of products of Bessel
functions, and summations over zeros.

An equivalent but computationally much more convenient approach is to represent the
solution of the equation in the integral form

ψ(z, z∗) = 1

2π

∫ 2π

0
dα h(α)e

1
2 ε[eiαw(z∗)−e−iαw(z)] (14)

where the indexn in ψ andε is omitted. Both the eigenvalueε and the functionh(α) are
obtained by imposing the boundary condition on the circle for all anglesθ :

0= 1

2π

∫ 2π

0
dα h(α)e

1
2 ε[eiαw(e−iθ )−e−iαw(eiθ )] . (15)

Once they are found, the eigenfunction of the polygon, solving equation (1), is obtained
by entering them into expression (14), with the variablez replacing the mapping function
w(z). By introducing the Fourier components of the periodic functionh(α)

h(α) =
∞∑

k=−∞
hke

ikα (16)

we obtain the following representation of the eigenfunction for the polygon:

ψ(r, θ) =
∑
k

hke
ikθJ−k(εr). (17)

In particular, for the circle, the requirement of vanishing on the boundary leads to the
Bessel–Fourier basisum,s .

To start the perturbative scheme, let us expand inλ the weight functionh(α) and,
correspondingly, its Fourier components:

h(α) = h(0)(α)+ λh(1)(α)+ λ2h(2)(α)+ · · · hk = h(0)k + λh(1)k + λ2h
(2)
k + · · · (18)
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and insert it, together with theλ expansion (11a) of the exact eigenvalue, into the boundary
equation (15) and solve it at the various orders inλ.

At zero order in λ, we get the equation

0=
∑
k

h
(0)
k e−ikθJk(ε0) (19)

which, for the ground state of polygons, is solved by setting

h
(0)
k = δ0,k ε0 = j0,1. (20)

Different zerosj0,s of J0 would provide other eigenvalues of the polygon, with the same
expansions (11a)–(11c).

The equation for thefirst order, after simple integrations and use of the symmetry
relationJ−n(x) = (−1)nJn(x), reads

0= 1

2π

∫ 2π

0
dαh(1)(α)eiε0 sin(α−θ) + ε0δ1J1(ε0)− ε0J1(ε0)

1

2
[f (eiθ )+ f (e−iθ )]. (21)

By taking the integral in the variableθ one obtains the resultδ1 = 0. By introducing the
Fourier expansion of the functionh(1)(α) all integrals can be evaluated. The requirement
of vanishing for allθ gives

h
(1)
±nk =

ε0

2

J1(ε0)

J∓kn(ε0)
fk k = 1, 2 . . . (22)

all other coefficients being zero. As it normally occurs in perturbation theory, the component
h
(1)
0 is not provided by the equation, due to the conditionJ0(ε0) = 0; the freedom in choosing

the phase ofψ allows us to puth(1)0 = 0.
The equation for thesecond order, after all simple integrations, is:

0= 1

2π

∫ 2π

0
dαh(2)(α)eiε0 sin(α−θ) + ε0δ2J1(ε0)+ 1

8
ε2

0J2(ε0)[f (e
iθ )2+ f (e−iθ )2]

+1

2
ε0

∞∑
k=−∞

h
(1)
kn eiknθ [f (e−iθ )J−kn−1(ε0)− f (eiθ )J−kn+1(ε0)]. (23)

Again, we are allowed to puth(2)0 = 0. The condition of vanishing for allθ gives the value
δ2 given in equation (11b), and

h
(2)
±n =

J1(ε0)

J∓n(ε0)

ε2
0

4

∞∑
s=1

fs+1fs

[
J(s+1)n+1(ε0)

J(s+1)n(ε0)
+ Jsn+1(ε0)

Jsn(ε0)

]
(24a)

h
(2)
±nk =

J1(ε0)

J∓kn(ε0)

ε2
0

4

∞∑
s=1

fk+sfs

[
J(k+s)n+1(ε0)

J(k+s)n(ε0)
+ Jsn+1(ε0)

Jsn(ε0)

]

+ J1(ε0)

J∓kn(ε0)

[
ε2

0

4

k−1∑
s=1

fk−sfs
Jsn+1(ε0)

Jsn(ε0)
− ε0

4
(kn+ 1)

k−1∑
s=1

fk−sfs

]
k > 1.

(24b)

The equation for thethird order is rather long:

0=
∞∑

k=−∞
h
(3)
k eikθJ−k(ε0)+ ε0

2

∞∑
k=−∞

h
(2)
kn eiknθ [f (e−iθ )J−kn−1(ε0)− f (eiθ )Jkn+1(ε0)]

−δ2
ε0

2

∞∑
k=−∞

h
(1)
kn eiknθ [J−kn−1(ε0)− J−kn+1(ε0)] + δ3ε0J1(ε0)− ε3

0

48
J3(ε0)



6522 L Molinari

+ε
2
0

8

∞∑
k=−∞

h
(1)
kn eiknθ [f (e−iθ )2J−kn−2(ε0)+ f (eiθ )2J−kn+2(ε0)]

− ε
3
0

16
J1(ε0)f (e

−iθ )f (eiθ )[f (e−iθ )+ f (eiθ )]. (25)

By taking the integral in the variableθ , the term containing the unknown coefficients of the
function h(3) vanishes because ofJ0(ε0) = 0, and we obtain, with some labour, the term
δ3, given in equation (11c).

The ground state of the polygon is obtained by entering the expansions of the Fourier
coefficients into equation (17). By taking into account the found propertyh

(`)
−kn = (−1)knh(`)kn ,

one obtains the expression equation (5):

ψn(r, θ) = J0(εnr)+ 2
∞∑
k=1

(h
(1)
−nk + h(2)−kn + . . .)Jkn(εnr) cos(knθ) (26)

where the coefficientsh(1)−kn andh(2)−kn are respectively given by equations (22) and (24).

3. Numerical evaluation

For the evaluation of the ground-state energy a numerical approach is necessary. In
particular, one must compute ratios of consecutive Bessel functions with the same argument.
To this end, forx smaller than all the zerosjν,m of Jν , the expansion [11, 12]:

Jν+1(x)

Jν(x)
= 2

x

∞∑
k=1

x2kSν,2k Sν,2k =
∞∑
m=1

1

j2k
ν,m

(27)

is used, where the coefficients are obtainable through a recursive relation; a long list of
valuesSν,2k is given in [13]. To achieve a good accuracy, terms up tok = 6 are used; for
the triangle and the square, the first ratiosJ3/J4, . . . were obtained directly by means of the
relationzJν+1(z)+ zJν−1(z) = 2νJν(z).

The results of the calculations for the ground-state energies are collected in table 1, for
some values ofn.

Theλ expansion could also have been carried out starting from a valuej0,k with k > 1,
and the formulae would be the same as indicated in the introduction. One could also
start from an initial state of the circleJp with p 6= 0. In this way, repeating the above
computations, one obtains expansions for excited states, with the rule thatp is not an integer
multiple of n. To second order, writing the same expansion (11a), one obtains:

δ1 = 0 δ2 = ε0

4

∞∑
k=1

f 2
k

(
Jkn+p+1(ε0)

Jkn+p(ε0)
+ Jkn−p+1(ε0)

Jkn−p(ε0)

)
(28)

Table 2.

First excited state

n j1,1/Cn δ2 ε
(1)
n Exact

3 6.769 25 0.044 913 6.465 16 6.398 48
4 5.023 48 0.010 230 4.972 09 4.967 29
5 4.500 15 0.003 557 4.484 69
6 4.264 36 0.001 429 4.258 28
8 4.058 08 0.000 358 4.056 63
∞ — — — 3.831 71
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whereε0 is now a zero ofJp. Note thatδ2 is independent of the sign ofp, meaning that the
doubly degenerate level of the circle evolves into a degenerate level of the polygon. For
the first excited state, Liboff [14] proved that it is indeed doubly degenerate, with the nodal
line given by a mirror symmetry of the polygon. A detailed discussion of degeneracies for
n = 3, 4 is given in [15].

A few values for the first excited state of regular polygons are provided in table 2. For
n = 3, 4 the accordance is rather poor, but the correction term for largern indicates that
the values become reliable.

Appendix

By using the integral representation of Bessel functions and the discrete representation of
Dirac’s delta function

Jν(t) = 1

2π

∫ 2π

0
dϕ eit sinϕ−iνϕ

∞∑
k=−∞

eik(ϕ−θ) = 2π(ϕ − θ) (A.1)

one can show the following identity, wheren is an integer:
∞∑

k=−∞
Jν+kn(t) cos[(ν + kn)ϕ + β]

= 1

n

n−1∑
`=0

cos

[
t sin

(
2π

n
`

)
cosϕ − ν`2π

n

]
cos

[
t cos

(
2π

n
`

)
sinϕ + β

]
. (A.2)

In particular, forν = 0, ϕ = π/2− θ , t = εr, β = π/(2n), x = r cosθ , y = r sinθ :

J0(εr) cos
( π

2n

)
+ 2

∞∑
k=1

Jkn(εr) cos
[
kn
π

2
+ π

2n

]
cos(knθ)

= 1

n

n−1∑
`=0

cos

[
εx cos

(
2π

n
`

)
+ π

2n

]
cos

[
εy sin

(
2π

n
`

)]
. (A.3)

For n = 3, 4 one obtains the first eigenstates of the equilateral triangle and the square:

ψ3(x, y) = 1

2
sin

[
4π

3

(
1

2
x +
√

3

2
y

)]
+ 1

2
sin

[
4π

3

(
1

2
x −
√

3

2
y

)]

−1

2
sin

(
4π

3
x

)
+
√

3

2
cos

[
4π

3

(
1

2
x +
√

3

2
y

)]

+
√

3

2
cos

[
4π

3

(
1

2
x −
√

3

2
y

)]
+
√

3

2
cos

(
4π

3
x

)
(A.4)

ψ4(x, y) = cos(πx)+ cos(πy). (A.5)
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